Given:

AC= AF

OA = AG

OD = DE

O is incentre of $\triangle ABC$

Construction:

Proof:

 $\angle BAO = \angle OAC$ (O is incentre. AO angle bisector)

 $\angle BAO = \angle GAF$ (Vertically opposite)

 $\therefore \angle OAC = \angle GAF$

In \triangle *GAF*, \triangle *OAC*

GA = AO (given)

AF = AC (given)

 $\angle GAF = \angle OAC$ (derived earlier)

 $\therefore \Delta GAF \cong \Delta OAC$

 $\angle ACO = \angle AFG$ -----(1)

 $\angle ACO = \angle BCO$ (O is incertre. CO is bisector)

 $\angle BCD = \angle BAD$ (same segment)

 $= \angle DAC$ (O is incentre)

 $\therefore \angle OCD = \angle OCB + \angle BCD$

 $= \angle ACO + \angle DAC$

 $= \angle ACO + \angle OAC$

Now, $\angle DOC = \angle OAC + \angle OCA$ (Exterior sum of interior opposite angle)

 $\therefore \angle DOC = \angle OCD$

⇒ DOC isosceles triangle

OD = CD

 $\angle DAC = \angle DAB$ (O in centre)

 \Rightarrow DC = DB (equal chord subtend equal angle)

∴ DB = OD

DB = DE (given)

∴OD = BD = ED

median is equal to half of side length.

 $\therefore \angle OBE = 90$

 $\angle ACB = \angle ADB$ (same segment)

BD = DE

 $\therefore \angle BDA = \angle DBE + \angle DEB$

$$= 2 \angle DEB$$
 (BD = DE $\Rightarrow \angle DEB = \angle DBE$)

 $\Rightarrow \angle DEB = \frac{1}{2} \angle BDA$

$$=\frac{1}{2}\angle ACB$$

$$= \angle ACO$$
 ------ (2) (O is incentre CO bisector)
From (1), (2) $\angle ACO = \angle DEB = \angle AFG$ $\Rightarrow \angle GEB = \angle GFB$ \therefore GFEB quadrilateral is cyclic. (because angles in same segment are equal)
